RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2005 Volume 8, Number 1, Pages 106–116 (Mi sjim323)

This article is cited in 10 papers

Differentiation of energy functionals in the three-dimensional theory of elasticity for bodies with surface cracks

E. M. Rudoy

M. A. Lavrent'ev Institute of Hydrodynamics

Abstract: A three-dimensional elastic body with a surface crack is considered. The boundary nonpenetration conditions in the form of inequalities (the Signorini type conditions) are given at the faces of the crack. The convergence is proved of a sequence of equilibrium problems in perturbed domains to the solution of an equilibrium problem in the unperturbed domain in a suitable Sobolev function space. The derivative is calculated of the energy functional with respect to the perturbation parameter of the surface crack.

UDC: 539.375

Received: 21.12.2004


 English version:
Journal of Applied and Industrial Mathematics, 2007, 1:1, 95–104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025