RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2012 Volume 15, Number 1, Pages 99–109 (Mi sjim714)

This article is cited in 11 papers

Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks

E. M. Rudoĭab

a Lavrent'ev Institute of Hydrodynamics SB RAS, Novosibirsk, RUSSIA
b Novosibirsk State University, Novosibirsk, RUSSIA

Abstract: We consider the plane elasticity problem for a body with a rigid inclusion and a crack along the boundary between the elastic matrix and rigid inclusion. We show that this problem possesses $J$- and $M$-invariant integrals. In particular, we construct an invariant integral of Cherepanov–Rice type for straight cracks.

Keywords: invariant integrals, rigid inclusion, crack, derivative of the energy functional, Cherepanov–Rice integral.

UDC: 539.375

Received: 21.01.2011


 English version:
Journal of Applied and Industrial Mathematics, 2012, 6:3, 371–380

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025