RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2003 Volume 6, Number 3, Pages 291–297 (Mi sjvm195)

On orthogonal decomposition of space in spline-fitting problem

A. I. Rozhenko

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences

Abstract: A special orthogonal decomposition of a basic space for an abstract quasi-spline-fitting problem is proposed. Using this decomposition, a theorem on representation of smoothing quasi-spline $\sigma_{\alpha}$ is proved. Exact in order convergence estimates of $\sigma_{\alpha}$ to the limit quasi-splines $\sigma_0$ and $\sigma_{\infty}$ are obtained. The monotony and the upper convexity of the function $\psi^{-1}(\beta)$, used in the algorithm of selection of the smoothing parameter $\alpha$ by the residual criterion, are proved.

UDC: 517.972.5+519.65

Received: 19.02.2003
Revised: 03.03.2003



© Steklov Math. Inst. of RAS, 2024