RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2005 Volume 8, Number 2, Pages 89–100 (Mi sjvm212)

Superconvergence of the gradient for cubic triangular finite elements

A. B. Andreevab, T. J. Todorovb

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
b Technical University of Gabrovo

Abstract: Superconvergence of the gradient of approximate solutions to second order elliptic equations is analyzed and justified for the 10-node cubic triangular elements. The existence of superconvergent points is proved. A recovery gradient technique in a subdomain is presented. The superclose property is proved. A rigorous proof of the superconvergent error estimate in a recovered gradient function is obtained. Numerical experiments supporting the theory under study are presented.

Key words: finite element method, superconvergence, recovered gradient.

MSC: 65N30, 65M15

Received: 01.10.2004

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024