RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2010 Volume 13, Number 4, Pages 387–401 (Mi sjvm414)

Asymptotic error estimates of a linearized projection-difference method for a differential equation with a monotone operator

P. V. Vinogradovaa, A. G. Zarubinb

a Far Eastern State Transport University, Khabarovsk
b Pacific National University

Abstract: In this paper, we study a projection-difference method for the Cauchy problem for an operator-differential equation with a self-adjoint leading operator $A(t)$ and a non-linear monotone subordinate operator $K(\cdot)$ in a Hilbert space. This method leads to solving a system of linear algebraic equations at each time level. Error estimates for the approximate solutions as well as for the fractional powers of the operator $A(t)$ are obtained. The method is applied to a model parabolic problem.

Key words: operator-differential equation, monotone operator, difference scheme, convergence rate, Faedo–Galerkin method.

UDC: 519.63

Received: 19.01.2010


 English version:
Numerical Analysis and Applications, 2010, 3:4, 317–328

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024