RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2017 Volume 20, Number 2, Pages 121–129 (Mi sjvm640)

This article is cited in 11 papers

On existence of a cycle in one asymmetric model of a molecular repressilator

N. B. Ayupovaab, V. P. Golubyatnikovab, M. V. Kazantsevc

a Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
c Polzunov Altai State Technical University, Lenina avenue, 46, Barnaul, Altai region, 656038, Russia

Abstract: We consider a nonlinear $6$-dimensional dynamic system which is a model of functioning of one simple molecular repressilator and find sufficient conditions of existence of a cycle $\mathcal C$ in the phase portrait of this system. An invariant neighborhood of $\mathcal C$ which retracts to $\mathcal C$ has been constructed.

Key words: nonlinear dynamical systems, gene networks models, phase portrait's discretization, hyperbolic equilibrium points, cycles, Brower's fixed point theorem.

UDC: 514.745.82

Received: 22.09.2016
Revised: 26.12.2016

DOI: 10.15372/SJNM20170201


 English version:
Numerical Analysis and Applications, 2017, 10:2, 101–107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025