RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2017 Volume 20, Number 3, Pages 297–312 (Mi sjvm653)

A difference scheme for a conjugate-operator model of the heat conduction problem in the polar coordinates

S. B. Sorokinab

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev av., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia

Abstract: In the polar coordinates, a discrete analog of the conjugate-operator model of the heat conduction problem preserves the structure of the original model. The difference scheme converges with the second order of accuracy for the cases of discontinuous parameters of the medium in the Fourier law and irregular grids. An efficient algorithm for solving the discrete conjugate-operator model in the case when the thermal conductivity tensor is a single operator.

Key words: problem of heat conductivity, mathematical model, discrete analog, polar coordinates, convergence, difference scheme.

UDC: 519.632

Received: 26.01.2017
Revised: 04.04.2017

DOI: 10.15372/SJNM20170306


 English version:
Numerical Analysis and Applications, 2017, 10:3, 244–258

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025