RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2017 Volume 20, Number 4, Pages 445–451 (Mi sjvm663)

This article is cited in 3 papers

The Lebesgue constant of local cubic splines with equally-spaced knots

V. T. Shevaldinab, O. Ya. Shevaldinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaja str., Ekaterinburg, 620990, Russia
b Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russia

Abstract: It is proved that the uniform Lebesgue constant (the norm of a linear operator from $C$ to $C$) of local cubic splines with equally-spaced knots, which preserve cubic polynomials, is equal to $11/9$.

Key words: Lebesgue constants, local cubic splines, equally-spaced knots.

UDC: 519.65

Received: 20.03.2017
Revised: 25.05.2017

DOI: 10.15372/SJNM20170408


 English version:
Numerical Analysis and Applications, 2017, 10:4, 362–367

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024