RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2018 Volume 21, Number 2, Pages 215–223 (Mi sjvm679)

This article is cited in 1 paper

Some algebraic approach for the second Painlevé equation using the optimal homotopy asymptotic method (OHAM)

D. Sierra-Portaab

a Grupo de Investigaciones en Relatividad y Gravitación (GIRG), Escuela de Física, Universidad Industrial de Santander, Carrera 27 y Calle 9, 640002 Bucaramanga, Colombia
b Centro de Modelado Científico, Facultad Experimental de Ciencias, Universidad del Zulia, 4001 Maracaibo, Venezuela

Abstract: The study of Painlevé's equations has increased during the last years, due to the awareness that these equations and their solutions can accomplish good results both in the field of pure mathematics and theoretical physics. In this paper we introduced an optimal homotopy asymptotic method (OHAM) approach to propose analytic approximate solutions to the second Painlevé equation. The advantage of this method is that it provides a simple algebraic expression that can be used for further developments while maintaining good performance and fitting closely the numerical solution.

Key words: Painlevé transcendent, optimal homotopy asymptotic methods, approximate solutions.

MSC: 34B15, 65H, 41A10

Received: 27.04.2017
Revised: 16.08.2017

DOI: 10.15372/SJNM20180207


 English version:
Numerical Analysis and Applications, 2018, 11:2, 170–177

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024