RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2019 Volume 22, Number 4, Pages 399–414 (Mi sjvm722)

This article is cited in 4 papers

A numerical method for predicting hemodynamic effects in vascular prostheses

V. G. Borisovab, Yu. N. Zakharovab, Yu. I. Shokina, E. A. Ovcharenkoc, K. Y. Klyshnikovc, I. N. Sizovac, A. V. Batranind, Y. A. Kudryavtsevac, P. S. Onishchenkoac

a Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 603090 Russia
b Kemerovo State University, ul. Krasnaya 6, Kemerovo, 650000 Russia
c Kemerovo Cardiology Center, Sosnovyi blv. 6, Kemerovo, 650002 Russia
d Tomsk Polytechnic University, pr. Lenina 30, Tomsk, 634050 Russia

Abstract: The three-dimensional unsteady-state periodic flow of blood in xenogenic vascular bioprostheses is simulated using computational fluid dynamics methods. The geometry of the computational domain is based on microtomographic scanning of bioprostheses. To set a variable pressure gradient causing a non-stationary flow in the prostheses, personal-specific data of the Doppler-echography of the blood flow of a particular patient are used. A comparative analysis of the velocity fields in the flow areas corresponding to three real samples of bioprostheses with multiple stenoses is carried out. In the zones of stenosis and outside of them, the distribution of the near-wall shear stress, which influences the risk factors for thrombosis in the prostheses, is analyzed. An algorithm for predicting the hemodynamic effects arising in vascular bioprostheses, based on the numerical modeling of a blood flow in them, is proposed.

Key words: computer modeling, blood flow, bioprostheses, wall shear stress.

UDC: 519.6, 51-76

Received: 26.10.2018
Revised: 19.02.2019
Accepted: 25.07.2019

DOI: 10.15372/SJNM20190402


 English version:
Numerical Analysis and Applications, 2019, 12:4, 326–337

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024