RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2021 Volume 24, Number 2, Pages 117–129 (Mi sjvm770)

This article is cited in 2 papers

Generalized bivariate Hermite fractal interpolation function

S. Jhaa, A. K. B. Chanda, M. A. Navascuesb

a Department of Mathematics, Indian Institute of Technology Madras, Chennai, 600036, India
b Departamento de Matematica Aplicada, Escuela de Ingenieria y Arquitectura, Universidad de Zaragoza, Zaragoza, 500018, Spain

Abstract: Fractal interpolation provides an efficient way to describe the smooth or non-smooth structure associated with nature and scientific data. The aim of this paper is to introduce a bivariate Hermite fractal interpolation formula which generalizes the classical Hermite interpolation formula for two variables. It is shown here that the proposed Hermite fractal interpolation function and its derivatives of all orders are good approximations of the original function even if the partial derivatives of the original functions are non-smooth in nature.

Key words: fractals, fractal interpolation, Hermite interpolation, fractal surface, convergence.

MSC: 28A80, 41A30, 65D05, 65D07, 65D10

Received: 01.11.2018
Revised: 01.11.2018
Accepted: 01.11.2018

DOI: 10.15372/SJNM20210201


 English version:
Numerical Analysis and Applications, 2021, 14:2, 103–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025