RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2022 Volume 25, Number 4, Pages 409–416 (Mi sjvm820)

New convergence mode for the generalized spectrum approximation

S. Kamouche, H. Guebbai

Laboratoire des Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945, B.P. 401, Guelma, 24000, Algérie

Abstract: In this paper, we introduce a new convergence mode to deal with the generalized spectrum approximation of two bounded operators. This new technique is obtained by extending the well-known $\nu$-convergence used in the case of classical spectrum approximation. This new vision allows us to see the $\nu$-convergence assumption as a special case of our new method compared to the hypotheses needed in old methods, those required in this paper are weaker. In addition, we prove that the property $U$ holds, which solves the spectral pollution problem arising in spectrum approximation of unbounded operator.

Key words: generalized spectrum, $\nu$-convergence, property $U$, spectral approximation.

MSC: 47A58, 47A05, 45L05, 15A18

Received: 22.02.2022
Revised: 31.03.2022
Accepted: 18.07.2022

DOI: 10.15372/SJNM20220406



© Steklov Math. Inst. of RAS, 2024