RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2022 Volume 25, Number 4, Pages 417–428 (Mi sjvm821)

Stability domains of explicit multistep methods

I. V. Kireevab, A. E. Novikovb, E. A. Novikovba

a Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk
b Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk

Abstract: A new algorithm is proposed for obtaining stability domains of multistep numerical schemes. The algorithm is based on Bernoulli’s algorithm for computing the greatest in magnitude root of a polynomial with complex coefficients and the Dandelin–Lobachevsky–Graeffe method for squaring the roots. Numerical results on the construction of stability domains of Adams–Bashforth methods of order 3–11 are given.

Key words: Adams–Bashforth method, locus, stability domain, Bernoulli method, Dandelin–Lobachevsky–Graeffe method.

UDC: 519.6

Received: 17.03.2022
Revised: 24.03.2022
Accepted: 18.07.2022

DOI: 10.15372/SJNM20220407



© Steklov Math. Inst. of RAS, 2024