RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2024 Volume 27, Number 3, Pages 303–318 (Mi sjvm879)

On existence and numerical solution of a new class of nonlinear second degree integro-differential Volterra equations with a convolution kernel

S. Lemitaab, M. L. Guessoumic

a Department of Mathematics and Computer Science, Echahid Cheikh Larbi Tebessi University, Road of Constantine, Tebessa, 12022, Algeria
b Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma, B.P. 401, Guelma, 24000, Algérie
c Département des Sciences Exactes, Ecole Normale Supérieure de Ouargla, Cité Ennacer, Ouargla, 30000, Algérie

Abstract: This paper considers a new class of nonlinear second degree integro-differential Volterra equations with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using the Schauder fixed point theorem. Moreover, the Nyström method is applied to obtain an approximate solution of the proposed Volterra equation. Numerical examples are given to validate the adduced results.

Key words: Volterra equation, integro-differential equation, convolution kernel, Schauder fixed point theorem, Nyström method.

MSC: 45D05, 47G20, 45E10, 47H10, 65R20

Received: 21.11.2023
Revised: 02.04.2024
Accepted: 19.04.2024

DOI: 10.15372/SJNM20240304



© Steklov Math. Inst. of RAS, 2025