RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 9, Pages 77–98 (Mi sm10013)

Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials

R. M. Gadzhimirzaev

Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala, Russia

Abstract: We study approximations of a function $f\in W^r_{l^2_{\omega}(\Omega_\delta)}$, $\omega(x)=e^{-x}(1-e^{-\delta})$, by the de la Vallée Poussin means of partial sums of the Fourier series in the Sobolev orthonormal system of polynomials $\{m_{n,N}^{0,r}(x)\}$ generated by the system of Meixner polynomials.
Bibliography: 32 titles.

Keywords: Sobolev type inner product, Fourier series, Meixner polynomials, approximation properties, de la Vallée Poussin means.

MSC: 41A10

Received: 19.10.2023 and 21.05.2024

DOI: 10.4213/sm10013


 English version:
Sbornik: Mathematics, 2024, 215:9, 1202–1223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025