RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2024 Volume 215, Number 7, Pages 52–60 (Mi sm10040)

On a family of algebraic number fields with finite 3-class field tower

L. V. Kuz'min

National Research Centre "Kurchatov Institute", Moscow, Russia

Abstract: Let $\ell=3$, $k=\mathbb Q(\sqrt{-3})$ and $K=k(\sqrt[3]{a})$, where $a$ is a natural number such that $a^2\equiv 1\pmod 9$. Under the assumption that there are exactly three places not over $\ell$ that ramify in the extension $K_\infty/k_\infty$, where $k_\infty$ and $K_\infty$ are cyclotomic $\mathbb Z_3$-extensions of the fields $k$ and $K$, respectively, we study 3-class field towers for intermediate fields $K_n$ of the extension $K_\infty/K$.
It is shown that for each $K_n$ the 3-class field tower of the field $K_n$ terminates already at the first step, which means that the Galois group of the extension $\mathbf H_\ell(K_n)/K_n$, where $\mathbf H_\ell(K_n)$ is the maximal unramified $\ell$-extension of the field $K_n$, is Abelian.
Bibliography: 7 titles.

Keywords: Iwasawa theory, Tate module, extensions with bounded ramification, Riemann–Hurwitz formula, class field tower.

MSC: Primary 11S15; Secondary 11S20

Received: 28.11.2023 and 11.03.2024

DOI: 10.4213/sm10040


 English version:
Sbornik: Mathematics, 2024, 215:7, 911–919

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024