RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 4, Pages 90–112 (Mi sm10120)

Avkhadiev–Wirths conjecture on best Brezis–Marcus constants

R. G. Nasibullin

N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: We study Hardy-type inequalities with additional terms. The constant $\lambda(\Omega)$ multiplying the additional term depends on the geometry of the multidimensional domain $\Omega$ and the numerical parameters of the problem. This constant (functional) is commonly called the Brezis–Marcus constant. Avkhadiev and Wirths [1] put forward the conjecture that, over all $n$-dimensional domains with fixed inner radius $\delta_0$, the maximum best Brezis–Marcus constant is $\lambda(B_n)$, where $B_n $ is the $n$-ball of radius $\delta_0$. We improve the previously available lower estimates for $\lambda(B_n)$, for $n=2$ and $n= 4,\dots,10$, which takes us closer to this conjecture.
Bibliography: 18 titles.

Keywords: Hardy inequality, inner radius, distance function, Bessel function, additional term.

MSC: 26D10, 26D15

Received: 16.05.2024 and 10.12.2024

DOI: 10.4213/sm10120


 English version:
Sbornik: Mathematics, 2025, 216:4, 538–559

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025