RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 9, Pages 103–124 (Mi sm1014)

This article is cited in 20 papers

Existence of solutions with singularities for the maximal surface equation in Minkowski space

A. A. Klyachin, V. M. Miklyukov


Abstract: Let $\Omega$ be a domain in $\mathbb{R}^n$, and $A=(a_1,\dots,a_N)$ a finite tuple of points in $\Omega$. The problem is considered of the existence of a solution for the maximal surface equation in $\Omega\setminus A$, where Dirichlet boundary data are given on $\partial\Omega$, and the flows of the time gradient on the graph of the solution in the Minkowski space $\mathbb{R}_1^{n+1}$ are given at the points $a_i$.

UDC: 517.95

MSC: Primary 53A10, 49Q25; Secondary 35Q99, 53B30, 53C50, 49Q05

Received: 23.11.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 80:1, 87–104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024