RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 5, Pages 123–150 (Mi sm10156)

Contact line bundles, foliations and integrability

B. Jovanović

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Republic of Serbia

Abstract: We formulate the definition of the noncommutative integrability of contact systems on a contact manifold $(M,\mathcal H)$ using the Jacobi structure on the space of sections $\Gamma(L)$ of a contact line bundle $L$. In the cooriented case, if the line bundle is trivial and $\mathcal H$ is the kernel of a globally defined contact form $\alpha$, the Jacobi structure on the space of sections reduces to the standard Jacobi structure on $(M,\alpha)$. We therefore treat contact systems on cooriented and non-cooriented contact manifolds simultaneously. In particular, this allows us to work with dissipative Hamiltonian systems, where the Hamiltonian does not have to be preserved by the Reeb vector field.
Bibliography: 32 titles.

Keywords: noncommutative integrability, contact Hamiltonian vector fields, line bundles, foliations, momentum map.

MSC: 37J35, 37J55, 53C12, 53D10

Received: 07.07.2024 and 15.02.2025

DOI: 10.4213/sm10156


 English version:
Sbornik: Mathematics, 2025, 216:5, 689–713

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025