Abstract:
We formulate the definition of the noncommutative integrability of contact systems on a contact manifold $(M,\mathcal H)$ using the Jacobi structure on the space of sections $\Gamma(L)$ of a contact line bundle $L$. In the cooriented case, if the line bundle is trivial and $\mathcal H$ is the kernel of a globally defined contact form $\alpha$, the Jacobi structure on the space of sections reduces to the standard Jacobi structure on $(M,\alpha)$. We therefore treat contact systems on cooriented and non-cooriented contact manifolds simultaneously. In particular, this allows us to work with dissipative Hamiltonian systems, where the Hamiltonian does not have to be preserved by the Reeb vector field.
Bibliography: 32 titles.