Abstract:
This article is a study of the Dirichlet problem
$$
\begin{cases}
Lu=0&\text{in}\ \Omega,
\\
\partial^\alpha u\big|_{\partial \Omega}=0,&|\alpha|\leqslant m-1,
\end{cases}
$$
where $\Omega\subset R^n$ is an open (possibly unbounded) set,
$\alpha=(\alpha_1,\dots,\alpha_n)$ is a multi-index,
$|\alpha|=\alpha_1+\dots+\alpha_n$,
$$
L=\sum_{|\alpha|=|\beta|=m}\partial^\alpha \bigl(a_{\alpha\beta}(x)\partial^\beta\bigr),
$$
and the coefficients $a_{\alpha\beta}(x)$ are $N\times N$ matrices.