RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 12, Pages 23–52 (Mi sm1030)

This article is cited in 23 papers

On the dimension of the solution space of elliptic systems in unbounded domains

A. A. Kon'kov


Abstract: This article is a study of the Dirichlet problem
$$ \begin{cases} Lu=0&\text{in}\ \Omega, \\ \partial^\alpha u\big|_{\partial \Omega}=0,&|\alpha|\leqslant m-1, \end{cases} $$
where $\Omega\subset R^n$ is an open (possibly unbounded) set, $\alpha=(\alpha_1,\dots,\alpha_n)$ is a multi-index, $|\alpha|=\alpha_1+\dots+\alpha_n$,
$$ L=\sum_{|\alpha|=|\beta|=m}\partial^\alpha \bigl(a_{\alpha\beta}(x)\partial^\beta\bigr), $$
and the coefficients $a_{\alpha\beta}(x)$ are $N\times N$ matrices.

UDC: 517.95

MSC: Primary 35J55, 35A05; Secondary 31B15, 46E35

Received: 29.01.1993


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 80:2, 411–434

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025