RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1993 Volume 184, Number 12, Pages 87–122 (Mi sm1033)

This article is cited in 1 paper

Asymptotic behavior of the $s$-step method of steepest descent for eigenvalue problems in Hilbert space

P. Ph. Zhuk


Abstract: On the example of the Rayleigh functional a new approach is developed to the study of the asymptotic behavior of the $s$-step method, based on the proof of the existence of limit iteration parameters of the method in even (odd) iterations. This approach may be used to analyze the asymptotic behavior of the $s$-step method in the optimization of arbitrary sufficiently smooth functionals defined on a Hilbert space.

UDC: 519.61

MSC: Primary 49M10; Secondary 41A60, 49R10

Received: 10.06.1992


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1995, 80:2, 467–495

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025