RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2025 Volume 216, Number 10, Pages 159–168 (Mi sm10338)

Nonlinear growth of the Chebyshev norm of matrices under maximal cross approximation

S. S. Fedorovskiiab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Abstract: For the function $g(n)$ describing the maximal possible growth of the Chebyshev norms of maximal cross approximations of an $n\times n$ matrix, the inequality $4g(2k)\leqslant g(7k+3)$ is proved. The bound $g(n)\geqslant Cn^{\log_{7/2}4}$ is established on this basis.

Keywords: matrix, Chebyshev norm, cross approximation.

Received: 29.04.2025 and 15.07.2025

DOI: 10.4213/sm10338



© Steklov Math. Inst. of RAS, 2025