RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1992 Volume 183, Number 11, Pages 99–116 (Mi sm1091)

This article is cited in 2 papers

Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices

Pham Huu Tiep


Abstract: In a recent paper, R. Gow showed that in certain cases the basic spin representations of the group $2\mathfrak{A}_n$ (of degree $2^{[\frac{n}{2}]-1}$) can be rational. In such cases, the $2\mathfrak{A}_n$-invariant lattices $\Lambda$ in the corresponding rational module have many interesting properties. In the present paper all possibilities are found for the groups $G=\operatorname{Aut}(\Lambda)$. Also, a conjecture of Gow is proved: For $n=8k$, $ k\in\mathbb{N}$, there is among the $2\mathfrak{A}_n$-invariant lattices the even unimodular Barnes–Wall lattice $BW_{2^{4k-1}}$. At the same time, the rationality of the basic spin representation of $ 2\mathfrak{A}_{8k}$ and the reducibility of $\Lambda/2\Lambda$ as a $2\mathfrak{A}_{8k}$-module are proved.

UDC: 512

MSC: 20C30, 11H56

Received: 18.06.1991


 English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 77:2, 351–365

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024