RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 3, Pages 402–415 (Mi sm1174)

Existence of untrivial compact Tchebycheff sets in the spaces $L_\varphi$

D.-A. G. Kamuntavichius

Vilnius University

Abstract: It is proved that if $(T,\Omega,\mu)$ is a nonatomic measure space and $\varphi$ an even function nondecreasing on $[0,\infty)$ and such that $\varphi(0)=0$, $\varphi(u)>0$ for $u>0$, and $\varphi(u_1+u_2)<\varphi(u_1)+\varphi(u_2)$ for all $u_1,u_2>0$, then the space $L_\varphi(T,\Omega,\mu)$ does not contain boundedly compact Tchebycheff sets with more than one point.

UDC: 517.518.8

MSC: Primary 46E30, 46B20; Secondary 46A50

Received: 25.11.1988


 English version:
Mathematics of the USSR-Sbornik, 1991, 69:2, 431–444

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024