RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 5, Pages 579–588 (Mi sm1190)

This article is cited in 4 papers

The Pontryagin delay phenomenon and stable ducktrajectories for multidimensional relaxation systems with one slow variable

A. Yu. Kolesova, E. F. Mishchenkob

a P. G. Demidov Yaroslavl State University
b V. A. Steklov Mathematical Institute, USSR Academy of Sciences

Abstract: It is assumed that the equilibrium state of the relaxation system
$$ \varepsilon\dot x=f(x,y), \qquad \dot y=g(x,y,\mu), $$
where $x\in R^n$ and $y\in R$, passes generically through a point of discontinuity as $\mu$ varies. Under this condition stable duck cycles and cycles arising in a neighborhood of the equilibrium state are constructed.

UDC: 517.926

MSC: Primary 34D15, 34C25; Secondary 34C45, 34E05, 34C20

Received: 17.11.1989


 English version:
Mathematics of the USSR-Sbornik, 1991, 70:1, 1–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025