RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 10, Pages 1391–1402 (Mi sm1230)

This article is cited in 6 papers

New methods for the classification of the simple modular Lie algebras

H. Strade


Abstract: We investigate the structure of simple modular Lie algebras $L$ over an algebraically closed field of characteristic $p>7$. Let $T$ denote an optimal torus in some $p$-envelope $L_p$. We prove: If $Q(L,T)=L$ and $C_L(T)$ is a Cartan subalgebra, then $L$ is classical. If $Q(L,T)\ne L$ and $C_L(T)$ distinguishes the roots of $T$ on $L/Q(L,T)\ne 0$, then $L$ is of Cartan type.
The methods give new proofs even for the restricted simple Lie algebras.

UDC: 512.554.31

MSC: 17B50, 17B20

Received: 03.10.1989


 English version:
Mathematics of the USSR-Sbornik, 1992, 71:1, 235–245

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024