RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1990 Volume 181, Number 11, Pages 1543–1557 (Mi sm1245)

On a conjecture on sums of multiplicative functions

S. T. Tulyaganov

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan

Abstract: We consider the following conjecture, which was made in 1970 by B. V. Levin and A. S. Fainleib; if $f\in W$, $f(p)\leqslant g(p)$, $\sum_{p\leqslant x}g(p)\ln p\sim\tau_gx$, and (2) is fulfilled with $\tau_f\ne0$, then (1) holds. We prove that this conjecture holds if $\tau_f\cdot\tau_g >0$. In the case $\tau_f\cdot\tau_g\leqslant0$ we construct a counterexample to the conjecture. The asymptotic behavior of the sum of values of the function is found by an analytic method.

UDC: 511

MSC: Primary 11N37, 11N56; Secondary 11N60, 11M41

Received: 03.04.1990


 English version:
Mathematics of the USSR-Sbornik, 1992, 71:2, 387–403

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024