RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 3, Pages 408–420 (Mi sm1302)

This article is cited in 8 papers

Asymptotic properties and weighted estimates for Chebyshev–Hahn orthogonal polynomials

I. I. Sharapudinov


Abstract: The asymptotic behavior is investigated for the classical Chebyshev–Hahn orthogonal polynomials $Q_n(x;\alpha,\beta,N)$ $(0\leqslant n\leqslant N-1)$, which form an orthogonal system on the set $\{0,1\dots,N-1\}$ with the weight
$$ \rho(x)=c\frac{\Gamma(x+\alpha+1)\Gamma(N-x+\beta)}{\Gamma(x+1)\Gamma(N-x)} \quad (\alpha,\beta>-1) $$
and are such that $Q_n(0,\alpha,\beta,N)=1$. A weighted estimate is established as a corollary.

UDC: 517.5

MSC: 33C45

Received: 25.12.1989


 English version:
Mathematics of the USSR-Sbornik, 1992, 72:2, 387–401

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024