RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 5, Pages 622–637 (Mi sm1314)

This article is cited in 2 papers

Almost everywhere convergence of multiple Fourier series of monotonic functions

M. I. Dyachenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $m$ be a natural number, $m\geqslant2$. Then we shall say that a function $f(\mathbf t)$ of period $2\pi$ in each variable is monotonic if there exist an open rectangular parallelepiped $(\mathbf a,\mathbf b)=\prod\limits_{j=1}^m(a_j,b_j)\subseteq [-\pi,\pi)^m$ and numbers $\gamma_1,\dots,\gamma_m$, each of which is either 0 or 1, such that $f(\mathbf t)=0$ for $\mathbf t\in [-\pi,\pi)^m\setminus(\mathbf a,\mathbf b)$, and if $\mathbf x,\mathbf y\in (\mathbf a,\mathbf b)$ and $(-1)^{\gamma_j}x_j\leqslant(-1)^{\gamma_j}y_j$ for $j=1,\dots,m$, then $f(\mathbf x)\geqslant f(\mathbf y)$. The main result of this paper is that the multiple trigonometric Fourier series of an integrable monotonic function is Pringsheim convergent almost everywhere, in particular at each point of continuity of $f(\mathbf t)$ in the interior of $(\mathbf a,\mathbf b)$.

UDC: 517.51

MSC: 42B05

Received: 25.12.1989


 English version:
Mathematics of the USSR-Sbornik, 1992, 73:1, 11–25

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024