RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1996 Volume 187, Number 5, Pages 143–160 (Mi sm132)

This article is cited in 3 papers

On the de la Vallé-Poussin theorem on the uniqueness of the trigonometric series representing a function

N. N. Kholshchevnikova

Moscow State Technological University "Stankin"

Abstract: The de la Vallé-Poussin theorem states that if a trigonometric series converges to a finite integrable function $f$ everywhere outside a countable set $E$, then it is the Fourier series of $f$. In this paper the theorem is shown to hold also if the exceptional set $E$ is a union of finitely many $H$-sets.

UDC: 517.5

MSC: Primary 42A20, 42A24; Secondary 42A63

Received: 05.10.1995

DOI: 10.4213/sm132


 English version:
Sbornik: Mathematics, 1996, 187:5, 767–784

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025