RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 5, Pages 723–745 (Mi sm1321)

This article is cited in 3 papers

Best and optimal recovery methods for classes of harmonic functions

K. Yu. Osipenko

Moscow Aviation Technological Institute

Abstract: The author considers problems of best recovery of a functional $L_u=\lambda_0u(x)+\dots+\lambda_ku^{(k)}(x)$, $x\in(-1,1)$, in the space $h_p$ of harmonic functions for $p=\infty$ or 2, in terms of the values of the functions and their derivatives at points of the interval $(-1,1)$. In the space $h_\infty$ the problem of constructing best quadrature formulas is solved. The existence of optimal quadrature formulas is proved, and, under certain conditions, the uniqueness of the optimal knots.

UDC: 512

MSC: Primary 41A65; Secondary 41A05, 41A30, 41A35, 41A55, 31A05

Received: 19.05.1989


 English version:
Mathematics of the USSR-Sbornik, 1992, 73:1, 111–133

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024