RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1996 Volume 187, Number 6, Pages 53–72 (Mi sm136)

This article is cited in 9 papers

Division rings of quotients and central elements of multiparameter quantizations

V. G. Mosin, A. N. Panov

Samara State University

Abstract: It is proved that the algebra of regular functions on quantum $m\times n$ matrices admits a division ring of quotients and that this division ring is a division ring of twisted rational functions. A description is given of the field of central elements in the division ring of rational functions on quantum $m\times n$ matrices in the one-parameter and multiparameter cases. In the one-parameter case for $q$ of a general form the center is a purely transcendental extension of a field $\mathbb K$ of degree $l$ (were $l$ is the greatest common divisor of $m$ and $n$) if both numbers $m/l$ and $n/l$ are odd. If at least one of the numbers $m/l$ and $n/l$ is even, then the center is scalar. In the multiparameter case the answer depends upon the parameters $P$,$Q$$c$. Here the generators of the center are described and it is proved that the center is scalar for the case of even $n$ and parameters of a general form. Analogous result are obtained for the division ring of rational functions on a quantum Borel subgroup of $GL_{P,Q,c}(n)$.

UDC: 512.66

MSC: Primary 17B37, 16S36, 16K30; Secondary 16W30, 16S30, 16S80, 16U70

Received: 03.08.1995

DOI: 10.4213/sm136


 English version:
Sbornik: Mathematics, 1996, 187:6, 835–855

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026