RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2005 Volume 196, Number 6, Pages 71–110 (Mi sm1365)

This article is cited in 7 papers

Sets admitting connection by graphs of finite length

A. O. Ivanov, I. M. Nikonov, A. A. Tuzhilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The aim of this paper is the description and study of the properties of the subsets $M$ of a metric space $\mathbb X$ that can be connected by a graph of finite length. We obtain a criterion describing these sets, find several geometric properties of them (in the case $\mathbb X=\mathbb R^n$), and derive a formula for calculating the length of a minimal spanning tree on $M\subset\mathbb X$ as the integral of a certain function constructed by $M$.

UDC: 514.774.8+519.176

MSC: Primary 05C10; Secondary 05C05, 05C35, 46B20, 57M15

Received: 04.10.2004

DOI: 10.4213/sm1365


 English version:
Sbornik: Mathematics, 2005, 196:6, 845–884

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024