RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1991 Volume 182, Number 9, Pages 1367–1374 (Mi sm1373)

This article is cited in 1 paper

A description of the sets of Lebesque points and points of summability for a Fourier series

A. M. Diyachkov


Abstract: The set of Lebesgue points of a locally integrable function on $N$-dimensional Euclidean space $\mathbf R^N$, $N\geqslant1$, is an $F_{\sigma\delta}$-set of full measure. In this article it is shown that every $F_{\sigma\delta}$-set of full measure is the set of Lebesgue points of some measurable bounded function, and, further, that a set with these properties is the set of points of convergence and nontangential (stable) convergence of a singular integral of convolution type:
$$ \varphi_\varepsilon\ast f(x), \quad \varphi_\varepsilon(t)=\varepsilon^{-N}\varphi(t/\varepsilon)\in L(\mathbf R^N), \quad \varepsilon\to+0, $$
for some measurable bounded function $f$. On the basis of this result the set of points of summability of a multiple Fourier series by methods of Abel, Riesz, and Picard types is described.

UDC: 517.5

MSC: Primary 42A24, 04A15; Secondary 42A20

Received: 01.06.1990


 English version:
Mathematics of the USSR-Sbornik, 1993, 74:1, 111–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024