RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2005 Volume 196, Number 12, Pages 99–122 (Mi sm1444)

This article is cited in 20 papers

Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight

V. G. Lysov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences

Abstract: The Hermite–Padé approximants with common denominator are considered for a pair of Stieltjes functions with weights $x^\alpha e^{-\beta_1x}$ and $x^\alpha e^{-\beta_2x}$, where $\alpha>-1$, $\beta_2>\beta_1>0$. On the basis of the method of the Riemann–Hilbert matrix problem the strong asymptotics of these approximants are found in the case $\beta_2/\beta_1<3+2\sqrt2$. The limiting distribution of the zeros of the denominators of the Hermite–Padé approximants is shown to be equal to the equilibrium measure of a certain Nikishin system.

UDC: 517.53

MSC: 41A21, 42C05

Received: 28.03.2005 and 14.10.2005

DOI: 10.4213/sm1444


 English version:
Sbornik: Mathematics, 2005, 196:12, 1815–1840

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024