RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 2, Pages 57–74 (Mi sm1511)

Weighted estimates for tangential boundary behaviour

V. G. Krotov, L. V. Smovzh

Belarusian State University, Faculty of Mathematics and Mechanics

Abstract: Let $(X,\mu,d)$ be a space of homogeneous type (here $d$ is a quasimetric and $\mu$ a measure). A function $\varepsilon$ of modulus of continuity kind gives rise to approach regions $\Gamma_{\varepsilon}(x)$ at the boundary of $\mathbf{X}$, $\mathbf{X}=X\times[0,1)$, where for a point $x\in X$,
$$ \Gamma_{\varepsilon}(x)=\{(y,t)\in\mathbf{X}:d(x,y)<\varepsilon(1-t)\}. $$
These are ‘tangential’ regions if $\lim_{t\to+0}\varepsilon(t)/t=\infty$.
Weighted $L^p$-estimates are proved for the corresponding maximal functions of integral operators. Applications of these estimates to potentials in $\mathbb{R}^n$ and to multipliers of homogeneous expansions of holomorphic functions in the Hardy classes in the unit ball of $\mathbb{C}^n$ are presented.
Bibliography: 20 titles.

Keywords: space of homogeneous type, tangential boundary behaviour, weighted inequalities.

UDC: 517.5

MSC: Primary 31B25; Secondary 46E35

Received: 30.01.2006

DOI: 10.4213/sm1511


 English version:
Sbornik: Mathematics, 2006, 197:2, 193–211

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024