RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 7, Pages 31–44 (Mi sm1529)

This article is cited in 1 paper

Splittability of $p$-ary functions

M. I. Anokhin

M. V. Lomonosov Moscow State University

Abstract: A function $\varphi$ from an $n$-dimensional vector space $V$ over a field $F$ of $p$ elements (where $p$ is a prime) into $F$ is called splittable if $\varphi(u+w)=\psi(u)+\chi(w)$, $u\in U$, $w\in W$, for some non-trivial subspaces $U$ and $W$ such that $U\oplus W=V$ and for some functions $\psi\colon U\to F$ and $\chi\colon W\to F$. It is explained how one can verify in time polynomial in $\log p^{p^n}$ whether a function is splittable and, if it is, find a representation of it in the above-described form. Other questions relating to the splittability of functions are considered.
Bibliography: 3 titles.

UDC: 512.642+519.712.43

MSC: 15A03, 68Q17

Received: 14.02.2006 and 30.10.2006

DOI: 10.4213/sm1529


 English version:
Sbornik: Mathematics, 2007, 198:7, 935–947

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025