RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 3, Pages 87–116 (Mi sm1536)

This article is cited in 5 papers

Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities

I. A. Cheltsov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Shokurov's vanishing theorem is used for the proof of the $\mathbb Q$-factoriality of the following nodal threefolds: a complete intersection of hypersurfaces $F$ and $G$ in $\mathbb P^5$ of degrees $n$ and $k$, $n\geqslant k$, such that $G$ is smooth and $|{\operatorname{Sing}(F\cap G)}|\leqslant(n+k-2)(n-1)/5$; a double cover of a smooth hypersurface $F\subset\mathbb P^4$ of degree $n$ branched over the surface cut on $F$ by a hypersurface $G\subset\mathbb P^4$ of degree $2r\geqslant n$, provided that $|{\operatorname{Sing}(F\cap G)}|\leqslant(2r+n-2)r/4$.
Bibliography: 71 titles.

UDC: 512.76

MSC: 14J17, 14J30

Received: 08.02.2005

DOI: 10.4213/sm1536


 English version:
Sbornik: Mathematics, 2006, 197:3, 387–414

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024