RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 6, Pages 63–96 (Mi sm1571)

The buffer property in a non-classical hyperbolic boundary-value problem from radiophysics

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A mathematical model of a self-excited $RCL$-oscillator with a segment of a solenoid in the feedback loop is considered, which is the following boundary-value problem:
\begin{gather*} \frac{\partial^2}{\partial t^2} \biggl(u-\varkappa\frac{\partial^2u}{\partial x^2}\biggr) +\varepsilon\frac{\partial}{\partial t} \biggl(u-\varkappa\frac{\partial^2u}{\partial x^2}\biggr) =\frac{\partial^2u}{\partial x^2}\,, \\ \frac{\partial u}{\partial x}\bigg|_{x=1}=0, \qquad u\big|_{x=0}+(1+\varepsilon^2\gamma)u\big|_{x=1}-u^3\big|_{x=1}=0, \end{gather*}
where $0<\varepsilon\ll1$, and $\varkappa$ and $\gamma$ are positive parameters of order 1. For this boundary-value problem with suitably increased $\gamma$ and reduced $\varepsilon$ one proves the existence of an arbitrary prescribed finite number of stable cycles (solutions periodic in $t$).
Bibliography: 12 titles.

UDC: 517.926

MSC: 35L20, 35B10

Received: 14.02.2005

DOI: 10.4213/sm1571


 English version:
Sbornik: Mathematics, 2006, 197:6, 853–885

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024