RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 2, Pages 147–158 (Mi sm1601)

This article is cited in 13 papers

Classification of simple graded Lie algebras with nonsemisimple component $L_0$

M. I. Kuznetsov


Abstract: Two series $\mathscr R$ and $T$ of exceptional Lie algebras of characteristic 3 are constructed. It is proved that a simple 1-graded Lie algebra $L$ over an algebraically closed field of characteristic $p>2$ with component $L_0$ containing a noncentral radical is isomorphic either to one of the Lie algebras of the Cartan series $W$, $S$, and $\mathscr K$ with grading of type $(0,1)$, or to one of the Lie algebras of the series $\mathscr R$ and $T$, or to an exceptional Kostrikin–Frank Lie algebra.
Bibliography: 16 titles.

UDC: 512.554.31

MSC: Primary 17B70, 17B20, 17B25, 17B05; Secondary 17B50

Received: 19.01.1988


 English version:
Mathematics of the USSR-Sbornik, 1990, 66:1, 145–158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024