RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 6, Pages 831–849 (Mi sm1637)

This article is cited in 1 paper

The strong zero theorem for an elliptic boundary value problem in an angle

V. A. Kozlov


Abstract: Sufficient algebraic conditions are given under which the solution of a homogeneous elliptic boundary value problem with constant coefficients in an angle, which has a zero of infinite order at the vertex, vanishes identically. If the angle equals $\pi$ or $2\pi$, the sufficient conditions are satisfied by all elliptic boundary value problems. The same is true in the case of an arbitrary angle if the principal part of the elliptic operator is a power of a second order operator.
Bibliography: 17 titles.

UDC: 517

MSC: Primary 35J25; Secondary 35E05

Received: 03.05.1988


 English version:
Mathematics of the USSR-Sbornik, 1990, 67:1, 283–302

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025