RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 8, Pages 1067–1072 (Mi sm1648)

This article is cited in 8 papers

On the construction of a primitive normal basis in a finite field

S. A. Stepanov, I. E. Shparlinski


Abstract: Let $n$ be a natural number, $q$ a prime power, and $\theta$ a primitive element of the field $GF(q^n)$. This paper shows that there exist absolute constants $c_1,c_2>0$ such that for $N\geqslant\max(\exp\exp(c_1\ln^2n),c_2n\ln q)$ the set of elements $\theta^k$, $k=1,\dots,N$, includes at least one which generates a primitive normal basis of $GF(q^n)$ over $GF(q)$. For fixed $n$, this gives a polynomial time algorithm in $\ln q$ which, given an arbitrary primitive element $\theta\in GF(q^n)$, finds an element which generates a primitive normal basis for $GF(q^n)$ over $GF(q)$.
Bibliography: 17 titles.

UDC: 511

MSC: Primary 11T06, 11T07; Secondary 11T71, 11T30

Received: 22.03.1988


 English version:
Mathematics of the USSR-Sbornik, 1990, 67:2, 527–533

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024