RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 11, Pages 1443–1461 (Mi sm1669)

This article is cited in 5 papers

Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary

V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul


Abstract: This article establishes direct and inverse theorems of approximation theory (of the same type as theorems of Dzyadyk) that describe the quantitative connection between the smoothness properties of solutions of the equation
$$\overline\partial^jf=0,\qquad j\geqslant1,$$
and the rate of their approximation by “module” polynomials of the form
$$ P_N(z)=\sum_{n=0}^{j-1}\sum_{m=0}^{N-n}a_{m,n}z^m\overline z^n,\qquad N\geqslant j-1. $$
In particular, a constructive characterization is obtained for generalized Hölder classes of such functions on domains with quasiconformal boundary.
Bibliography: 19 titles.

UDC: 517.53

MSC: Primary 30E10, 41A10, 30G30; Secondary 30C60

Received: 09.10.1988


 English version:
Mathematics of the USSR-Sbornik, 1991, 68:2, 303–323

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025