RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 135(177), Number 2, Pages 169–185 (Mi sm1694)

This article is cited in 25 papers

Anderson's conjecture and the maximal monoid class over which projective modules are free

I. D. Gubeladze


Abstract: A positive solution is given to a conjecture of D. F. Anderson (Pacific J. Math. 1978, V. 79, № 1, P. 5–17) concerning freeness of finitely generated projective modules over normal monoid algebras. In the special case of torsion divisor class groups, or equivalently, the case of an integral extension, this conjecture was proved in 1982 (see Gubeladze, Generalized Serre problem for affine rings generated by monomials, Izdat. Tbiliss. Gos. Univ., Tbilisi, 1982, and Chouinard // Mich. Math. J. 1982. V. 29, № 2, P. 143–148). Using that result, the author obtains a description of the maximal class of commutative monoids satisfying the cancellation condition for which all finitely generated projective modules over the corresponding semigroup algebra (with any principal ideal domain as coefficient ring) are free. Namely, this class turns out to be the so-called “seminormal” monoids. By the same token a complete answer is given to some questions posed by Chouinard in the paper cited above.
Bibliography: 15 titles.

UDC: 512.666+512.71

MSC: Primary 13C10; Secondary 13B20, 18G05

Received: 04.12.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 63:1, 165–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024