RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 135(177), Number 2, Pages 210–224 (Mi sm1696)

This article is cited in 22 papers

Multiplicative classification of associative rings

A. V. Mikhalev


Abstract: Let $R$ be a ring, $l(a)$ and $r(a)$ the left and right annihilators of the element $a\in R$, $\mathrm{AC}(R)=\sum_{a,b\in R}l(a)bl(b)a$ the two-sided ideal in $R$ called the additive controller, and let $\alpha\colon R\to S$ be an $m$-isomorphism (i.e., multiplicative isomorphism) and $D(\alpha)=\{[(x+y)^\alpha-x^\alpha-y^\alpha]^{\alpha^{-1}}/x,y\in R\}$ its defect. An ideal $I$ in the ring $R$ is called an $m$-ideal if for all $m$-isomorphisms $\alpha\colon R\to S$, $L^\alpha$ is an ideal in $S$ and $a-b\in L$ if and only if $a^\alpha-b^\alpha\in L^\alpha$. It is shown that
$$ D(\alpha)\mathrm{AC}(R)=0=\mathrm{AC}(R)D(\alpha). $$
Very general sufficient conditions are given that a multiplicative isomorphism of subsemigroups of multiplicative semigroups of rings be extendible to the isomorphism of the subrings generated by them. Minimal prime ideals and the prime radical of a ring are $m$-ideals. The strongly regular and regular rings that have unique addition are characterized.
Bibliography: 29 titles.

UDC: 512.552.1

MSC: Primary 16A48; Secondary 16A12, 16A30, 16A34, 16A66

Received: 08.12.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 63:1, 205–218

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025