RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 135(177), Number 2, Pages 253–260 (Mi sm1699)

This article is cited in 5 papers

On polynomials of prescribed height in finite fields

I. E. Shparlinski


Abstract: This paper deals with the set $\mathfrak M(B)$ of monic polynomials of degree $n$ with integral coefficients belonging to a given $n$-dimensional cube $B$ with side $h$. An asymptotic formula is obtained for the number of polynomials in $\mathfrak M(B)$ having a specific type of decomposition into irreducible factors modulo some prime $p$, and an asymptotic formula for the number of primitive polynomials modulo $p$ in $\mathfrak M(B)$, which translates when $n=1$ into known results of I. M. Vinogradov on the distribution of primitive roots. These asymptotic formulas are nontrivial when $h\geqslant p^{n/(n+1)+\varepsilon}$ for any $\varepsilon>0$.
Moreover, an asymptotic formula is obtained for the average value of the number of divisors modulo $p$ of polynomials in $\mathfrak M(B)$, a result that is nontrivial when $h\geqslant\max(p^{1-2/n}\ln p,p^{1/2}\ln p)$.
Bibliography: 11 titles.

UDC: 512.62

MSC: 11T06

Received: 26.10.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 63:1, 247–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024