RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 135(177), Number 2, Pages 261–268 (Mi sm1700)

This article is cited in 22 papers

On solution of the Cauchy problem for the Korteweg–de Vries equation with initial data the sum of a periodic and a rapidly decreasing function

N. E. Firsova


Abstract: A scheme is presented for solving the Cauchy problem for the KdV equation with initial data a sum of a periodic function $p(x)$ and a rapidly decreasing function $q(x)$. The scattering theory constructed earlier by the author for the pair of operators $H_0=-d^2/dx^2+p(x)$ and $H=H_0+q(x)$ is used to solve this problem. Evolution formulas for the scattering data are found. The solution $p(x,t)$ of the KdV equation with a periodic initial condition obtained by V. A. Marchenko and S. P. Novikov is assumed known.
Bibliography: 11 titles.

UDC: 517.946

MSC: Primary 35Q20; Secondary 34B25

Received: 11.06.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 63:1, 257–265

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025