RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 136(178), Number 2(6), Pages 187–205 (Mi sm1736)

This article is cited in 5 papers

Distributions over an algebra of truncated polynomial

M. I. Kuznetsov


Abstract: We study integrable distributions over the $K$-algebra $\mathscr O_n$ of truncated polynomials, where $K$ is a field of characteristic $p>0$. We obtain an analogue of the theorem of Frobenius; we describe the equivalence classes of $TI$-distributions, i.e., of those distributions $\mathscr L$ with respect to which the algebra $\mathscr O_n$ has no nontrivial $\mathscr L$-invariant ideals; we show that over a perfect field any $TI$-distribution is equivalent to a general Lie algebra of Cartan type $W_s(\mathscr F)$; and we find all the forms of the Zassenhaus algebra, in the process making essential use of the theory of representations of the chromatic quiver $_\circ\overrightarrow{_\rightsquigarrow}_\circ$ of Kronecker.
Bibliography: 13 titles.

UDC: 512.554.31

MSC: Primary 17B70, 17B40; Secondary 16A64, 58A30

Received: 04.05.1986 and 03.11.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 64:1, 187–205

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024