RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 137(179), Number 1(9), Pages 103–113 (Mi sm1772)

This article is cited in 8 papers

Varieties of residually finite Lie algebras

A. A. Premet, K. N. Semenov


Abstract: Lie algebras over a finite field of characteristic $p>3$ are studied. It is proved that all algebras of a variety of Lie algebras are residually finite if and only if the variety is generated by a finite algebra all of whose nilpotent subalgebras are Abelian.
Bibliography: 14 titles.

UDC: 512.544.31

MSC: Primary 17B05, 17B30; Secondary 17B20, 17B40

Received: 18.04.1987


 English version:
Mathematics of the USSR-Sbornik, 1990, 65:1, 109–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024