RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 137(179), Number 4(12), Pages 526–553 (Mi sm1800)

This article is cited in 3 papers

Asymptotic completeness in the problem of scattering by a Brownian particle

S. E. Cheremshantsev


Abstract: The author studies the three-dimensional Schrödinger equation with potential randomly depending on time:
$$ i\frac{\partial\psi}{\partial t}=-\Delta_x\psi+q(x-y(t))\psi;\quad\psi|_{t=0}=\psi_0(x);\quad t\geqslant0. $$
Here $\psi_0\in L_2(\mathbf R^3)$, $q$ is a fixed complex function, $y(t)$ is a sample function of the Wiener process. The main result is the following. Let $\operatorname{Im}q(x)\leqslant0$, $q\in L_2(\mathbf R^3)$ and suppose there exist $R$, $\delta>0$, such that $|q(x)|\leqslant C|x|^{-7/2-\delta}$ for $|x|\geqslant R$. Then for almost all (relative to Wiener measure) $y(\,\cdot\,)$ the solution $\psi(t,y(\,\cdot\,))$ of the above equation has free asymptotics as $t\to+\infty$ for any initial data $\psi_0$ in $L_2(\mathbf R^3)$, i.e. for some $\psi_+$
$$ \lim_{t\to+\infty}\|\psi(t,y(\,\cdot\,))-\exp(-itH_0)\psi_+\|_{L_2(\mathbf R^3)}=0,\qquad H_0=-\Delta_x. $$

Bibliography: 13 titles.

UDC: 517.4

MSC: Primary 35J10, 35P25; Secondary 35R60, 60J65

Received: 08.02.1988


 English version:
Mathematics of the USSR-Sbornik, 1990, 65:2, 531–559

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025